Example

\[f(x) = \sqrt{x} \]
\[f'(x) = \frac{1}{2\sqrt{x}} \]

\[f'(b) = f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4} \]

\[f(a) \approx f(b) - f'(b)(b-a) \]
\[\sqrt{3} \approx 2 - \frac{1}{4}(4-3) \]
\[\approx 2 - \frac{1}{4}(1) \]
\[\approx 1.75 \]

Two methods to solve linear approximation problems:
1) Find a tangent then plug in values
2) Use the formula (don't use if you have to solve within a certain margin of error)

CURVE SKETCHING

Another application of the derivative.

\[f'(x) = 0 \text{ is a critical point} \]

Finding critical points using tangents is called "first derivative analysis."

- Derivatives in this area are positive:
 - \(f'(x) = + \)
 - \(f(x) \) is increasing

- Derivatives in this area are negative:
 - \(f'(x) = - \)
 - \(f(x) \) is decreasing
Note: When \(f'(x) = 0 \), a critical point is not guaranteed.

Critical points may exist when
1) \(f'(x) = 0 \)
2) \(f'(x) \) does not exist

When is the first derivative positive or negative?
Use factor analysis.

Example:
\[
y = -3x^5 + 5x^3
\]
\[
\frac{dy}{dx} = -15x^4 + 15x^2
\]
\[
= -15x^2(x^2 - 1)
\]
\[
= -15x^2(x - 1)(x + 1)
\]

Let \(0 = -15x^2(x - 1)(x + 1) \)
\(x = 0, x = 1, x = -1 \)
These are possible critical values (or numbers).

\[
f(0) = -3(0)^5 + 5(0)^3 = 0 \quad (0, 0) \quad \text{these are}
\]
\[
f(1) = -3(1)^5 + 5(1)^3 = 2 \quad (1, 2) \quad \text{possible critical points.}
\]
\[
f(-1) = -3(-1)^5 + 5(-1)^3 = -2 \quad (-1, -2)
\]

The other possibility \((0, 0)\) is not a CP.
SECOND DERIVATIVE ANALYSIS

\[f''(x) = \frac{d}{dx} \left(\frac{f'(x)}{L_{slope}} \right) \]

The second derivative is the rate of change of slopes of tangents.

Changes in slope from \(\Theta \) to \(\Theta \): concave down \(\downarrow \)
Changes in slope from \(\Theta \) to \(\Theta \): concave up \(\uparrow \)

When \(f''(x) = 0 \), there is a point of inflection.

Example:

\[f''(x) = -60x^2 + 30x \]

\[= -30x(2x^2 - 1) \]

\[= -30x(\sqrt{2}x - 1)(\sqrt{2}x + 1) \]

\[0 = -30x(\sqrt{2}x - 1)(\sqrt{2}x + 1) \]

\[x = 0, \quad x = \frac{1}{\sqrt{2}}, \quad x = -\frac{1}{\sqrt{2}} \]

Possible inflection values

\[f(0) = -3(0)^5 + 5(0)^3 = 0 \quad (0,0) \]

\[f\left(\frac{1}{\sqrt{2}}\right) = -3\left(\frac{1}{\sqrt{2}}\right)^5 + 5\left(\frac{1}{\sqrt{2}}\right)^3 = 1.23 \quad (0.707, 1.23) \]

\[f\left(-\frac{1}{\sqrt{2}}\right) = -3\left(-\frac{1}{\sqrt{2}}\right)^5 + 5\left(-\frac{1}{\sqrt{2}}\right)^3 = -1.23 \quad (0.707, -1.23) \]

Possible inflection points

Graph:

Points of inflection (IP) and critical points (CP).
Four basic curves:

concave up

concave down

increasing

decreasing

example

\[f(x) = x^{8/3} - 5x^{4/3} \]

let \(0 = \frac{5(x-2)}{9x^{4/3}} \)

\[0 = 5(x-2) \quad 0 = 9x^{4/3} \]

\[0 = x-2 \quad 0 = x^{4/3} \]

\(x = 2 \quad x = 0 \)

\(y = -3 \sqrt[4]{q} \quad y = 0 \)

\((2, -3 \sqrt[4]{q}) \quad (0, 0) \)

let \(0 = \frac{10(x+1)}{9x^{4/3}} \)

let \(\frac{dnc}{\frac{10(x+1)}{9x^{4/3}}} \)

\(0 = 10(x+1) \quad 0 = 9x^{4/3} \)

\(0 = x+1 \quad 0 = x^{4/3} \)

\(x = -1 \quad x = 0 \)

\(y = -6 \quad y = 0 \)

\((-1, -6) \quad (0, 0) \)

Both possible CP's are CP's.

Only \((-1, -6)\) is an IP.
A vertical asymptote can act on a function just like a critical point, or an inflection point.

Example:

\[f(x) = \frac{x^2+1}{x^2-4} \]

Vertical Asymptote (VA): \(-2, 2\)

Horizontal Asymptote (HA): \(y = 1\)

\[f'(x) = 0 \quad \frac{-10x}{(x^2-4)^2} = 0 \]

\[f''(x) = \frac{10(3x^2+4)}{(x^2-4)^3} = 0 \]

Critical Points (CP):

Local Max (LMAX): \(x = \frac{2}{3}\)

Values of the Function:

\[f(x) = 0 \quad \frac{10(x^2+1)}{(x^2-4)^3} = dne \]

Solutions:

\[3x^2 = -4 \quad (x-2)(x+2) = 0 \]

\[x^2 = -\frac{4}{3} \quad x = 2, x = -2 \] (VA's)

No solution

Graph:

- HA: \(x = 1\)
- VA: \(x = \pm 2\)
- CP: \(LMAX, \left(\frac{2}{3}, -\frac{1}{4}\right)\)
Tools for curve sketching:
1) domain check
2) holes and breaks
3) asymptotes
4) x, y intercepts
5) crossovers
6) symmetry
7) transformations
8) factor analysis of f(x)
9) f'(x) analysis
10) f''(x) analysis

MEAN VALUE THEOREM

If f(x) is continuous and differentiable over the interval, there is at least one tangent at some point f'(c) which is parallel to the secant.

So \(m_T = m_s \)

\[
f'(c) = \frac{f(b) - f(a)}{b - a}
\]

Example

\(y = x^2 \) over \([1, 3]\). Find c.

Is \(x^2 \) continuous? YES

Is \(x^2 \) differentiable? YES

\[
\frac{dy}{dx} = 2x
\]

\[
f'(c) = \frac{f(b) - f(a)}{b - a}
\]

\[
2c = \frac{9 - 1}{3 - 1}
\]

\[
2c = \frac{8}{2}
\]

\[
c = 2
\]
L'Hospital's Rule

\[\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \text{ if } \lim_{x \to a} g(x) \neq 0 \text{ or } \pm \infty \]

Example

\[\lim_{x \to 0} \frac{\sin x}{x} = \frac{0}{0} \]

\[= \lim_{x \to 0} \frac{\cos x}{1} = \cos 0 = 1 \]

This rule can be repeated over and over.

Example

\[\lim_{x \to \infty} \frac{4x^2 + 6x}{3x^2 - 9x + 9} = \frac{\infty}{\infty} \]

\[= \lim_{x \to \infty} \frac{8x + 6}{3x - 9} = \infty \]

\[= \lim_{x \to \infty} \frac{8}{10} = \frac{8}{10} = \frac{4}{5} \]

Proof

\[\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \text{ if } \lim_{x \to a} g(x) \neq 0 \text{ or } \pm \infty \]

Now

\[\lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f(a) - f(x)}{g(a) - g(x)} \]

\[= \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} \]

\[= \lim_{x \to a} \frac{f(x)}{g(x)} - \lim_{x \to a} \frac{f(a)}{g(x)} \]

Example

\[\lim_{x \to \infty} e^{-x} \sqrt{x} = 0 \cdot \infty \]

\[= \lim_{x \to \infty} \frac{\sqrt{x}}{e^x} = \infty \]

\[= \lim_{x \to \infty} \frac{\sqrt{2x - \frac{1}{2}}}{e^x} \]

\[= \lim_{x \to \infty} \frac{1}{2e^{-\sqrt{x}}} = \frac{1}{\infty} = 0 \]

To solve limits of the other indeterminate forms (not 0 or \(\infty \)), convert them to 0 or \(\frac{\infty}{\infty} \).
\[\lim_{x \to 1^+} \frac{1}{x} - \frac{1}{x-1} = \infty - \infty \]
\[= \lim_{x \to 1^+} \frac{1 - \ln x}{x-1} = 0 \]
\[= \lim_{x \to 1^+} \frac{\ln x}{x-1} \]
\[= \lim_{x \to 1^+} \frac{\ln x + 1 - \frac{1}{x}}{1} = 0 \]
\[= \lim_{x \to 1^+} \frac{1}{2 + \ln x} = \frac{1}{2} \]

\[\lim_{x \to 0^+} \left(1 + x\right)^{1/x} = \left(1 + 0\right)^{1/0} = 1^\infty = 1 \]

\[y = \lim_{x \to 0^+} \left(1 + x\right)^{1/x} \]
\[\ln y = \lim_{x \to 0^+} \ln \left(1 + x\right)^{1/x} = \lim_{x \to 0^+} \frac{\ln \left(1 + x\right)}{x} \]
\[= \lim_{x \to 0^+} \frac{\ln \left(1 + x\right)}{1} = 1 \]
\[e^y = y \]
\[y = e \]

\[\lim_{x \to 0^+} (\sin x)^x = 0^0 \]
\[y = \lim_{x \to 0^+} (\sin x)^x \]
\[\ln y = \lim_{x \to 0^+} \ln (\sin x)^x = \lim_{x \to 0^+} x \ln (\sin x) \]
\[= \lim_{x \to 0^+} \frac{\ln (\sin x)}{1/x} = \frac{\sin x}{0} \]
\[= \lim_{x \to 0^+} \frac{\cos x / \sin x}{-1/x^2} = 0 \]
\[= \lim_{x \to 0^+} \frac{\sin x / \cos x}{0} = 0 \]
\[= \lim_{x \to 0^+} \frac{\sin x + \cos x (2x)}{\cos x} = 0 \]
\[y = e^0 \]
\[y = 1 \]
Example
\[
\lim_{x \to \infty} x^{1/x} = \infty
\]
\[
y = \lim_{x \to \infty} x^{1/x}
\]
\[
\ln y = \lim_{x \to \infty} \ln x^{1/x} = \lim_{x \to \infty} \frac{\ln x}{x}
\]
\[
= \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0 = \ln y
\]
\[
y = e^0
\]
\[
y = 1
\]

Story Problems
In these problems, always look for what's being maximized or minimized.

Example

Fence available = 2400 ft

This is called a "constraint".

What dimensions will create the maximum area?

Objective: \(A = xy \)
Constraint: \(2400 = 2x + y \)

\[A = x(2400 - 2x) \]
\[2400 - 2x = y \]
\[\frac{dA}{dx} = 2400 - 4x \]

Let \(0 = 2400 - 4x \)
\[2400 - 2(600) = y \]
\[4x = 2400 \]
\[y = 1200 \]

\(x = 600 \)
One possible max (at CP)

We still need to check if one of the end points for the absolute maximum.

Method One:

First derivative analysis:

\[
\begin{array}{cccccc}
\text{end} & \text{CP} & \text{end} & \text{point} & \text{point} & \text{point} \\
\text{point} & x = 0 & \text{LIMAX} & \text{600 - x} & 600 & x = 400 \\
\text{y = 1200} & \text{720,000} & \end{array}
\]
METHOD TWO

Second derivative analysis
\[f''(x) = -4 \]
\[\therefore \text{Always concave down, so } \text{CP} \rightarrow \text{Absolute max.} \]

METHOD THREE

Evaluate critical and end points

\[\begin{array}{c|c|c}
\text{X} & \text{A} \\
\hline
\text{EP} & 0 & 0 \\
\text{CP} & 600 & 720,000 \quad \text{Absolute max.} \\
\text{EP} & 1200 & 0 \\
\end{array} \]

ECONOMICS

Cost = Fixed cost + Variable cost
(e.g. rent, utilities) (e.g. materials)

\[\text{Cost} - C = cx \quad (c = \text{cost per unit}, \ x = \# \text{ of units}) \]

Revenue \[R = rx \quad (r = \text{revenue per unit}) \]

Profit \[P = px \quad (p = \text{profit per unit}) \]

Marginal cost = \[\frac{dc}{dx} \]
Marginal revenue = \[\frac{dR}{dx} \]
Marginal profit = \[\frac{dp}{dx} \]

Example

<table>
<thead>
<tr>
<th>X</th>
<th>r</th>
<th>(r - r_i = m(x-x_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>$450/unit</td>
<td>(r = -\frac{1}{10} (x-1000) + 450)</td>
</tr>
<tr>
<td>1100</td>
<td>$410/unit</td>
<td>(r = -\frac{1}{10} x + 100 + 450)</td>
</tr>
<tr>
<td>1200</td>
<td>$430/unit</td>
<td>(r = -\frac{1}{10} x + 550)</td>
</tr>
</tbody>
</table>

\[m = \frac{x_2-x_1}{y_2-y_1} = \frac{450-410}{1000-1100} = \frac{-50}{-100} = \frac{1}{10} \]

Price of unit for any \(x \)
What price will maximize revenue?

\[P = r_0 x \]

\[R = \left(-\frac{1}{10}x + 550\right)x \]

\[R = \frac{1}{10} x^2 + 550x \]

\[\frac{dR}{dx} = \frac{1}{10}(2x) + 550 \]

\[\frac{dR}{dx} = \frac{1}{5} x + 550 \]

let \(\frac{dR}{dx} = 0 \)

\[\frac{1}{5} x + 550 = 0 \]

\[x = 2,750 \text{ units} \]

How much of a rebate from original price will maximize revenue?

\[r(2750) = \frac{1}{10}(2750) + 550 \]

\[= 275 + 550 \]

\[= $2,750 \]

\[450 - 275 = $175 \text{ rebate} \]

The weekly cost is \(C(x) = \frac{68,000 + 150x}{\text{fixed}} \)

\[\text{variable} \]

What should the rebate be to maximize profit?

\[P = R - C \]

\[P = \left(-\frac{1}{10}x^2 + 550x\right) - \left(68,000 + 150x\right) \]

\[P = \frac{1}{10} x^2 + 400x - 68,000 \]

\[\frac{dP}{dx} = \frac{1}{10} x + 400 \]

let \(\frac{dP}{dx} = 0 \)

\[x = 2,000 \text{ units} \]

\[P(2000) = \frac{1}{10} (2000)^2 + 400 \]

\[= 4,000 \]

\[1,000 - 4,000 = $332,000 \text{ max profit} \]

\[r = \frac{1}{10} (2000) + 550 \]

\[= $350/\text{unit} \]

\[450 - 350 = $100 \text{ rebate} \]
NEWTON'S METHOD
A method of approximation which finds the zeros (roots or x-intercepts) of functions.

Steps:
1) guess a solution, e.g. x_0
2) find the tangent at that point $f'(x_0)$

 so \[y_i - y_0 = m(x_i - x_0) \]

 \[y_i - f(x_0) = f'(x_0)(x_i - x_0) \]

 \[y = f'(x_0)(x_i - x_0) + f(x_0) \]

 This is a linear approximation.

3) Make a better guess using the root of the tangent.

 \[x = f'(x_0)(x_i - x_0) + f(x_0) \]

 \[f(x) = f'(x_0)(x_i - x_0) \]

 \[\frac{f(x_0)}{f'(x_0)} = x_i - x_0 \]

 \[x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \]

4) Repeat for a new, even better guess

 \[x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \]

 \[x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} \]

 \[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

Note: The calculator's solver function uses Newton's method.

Example:
Find a root of $x^2 - 5x + 6 = (x - 3)(x - 2)$

<table>
<thead>
<tr>
<th>x_n</th>
<th>$f(x_n)$</th>
<th>$f'(x_n)$</th>
<th>$x_n - \frac{f(x_n)}{f'(x_n)} = x_{n+1}$</th>
</tr>
</thead>
</table>
| guess | $1^2 - 5(1) + 6 = 2$ | $2 - 5$ | \[x_{1+1} = x_1 - \frac{2}{2} = 1 - \frac{2}{2} = 1.000007 \]
| 1.4667 | 0.4444 | -1.6666 | 1.93333 |
| 1.7333 | 0.0711 | -1.1333 | 1.99407 |
| 1.9940 | 0.0035 | -1.0078 | 1.99999 |
| 1.99999 | 0.00001 | -1.00002 | 2 | one of the roots
Newton's method works only for real roots.

Example

\[\sqrt{13} = ? \]

\[(x - \sqrt{13}) = 0 \]

\[x = \sqrt{13} \]

\[x^2 = 13 \]

\[x^2 - 13 = 0 \quad f(x) = x^2 - 13 \]

<table>
<thead>
<tr>
<th>(x_n)</th>
<th>(f(x_n) = x^2 - 13)</th>
<th>(f'(x_n) = 2x)</th>
<th>(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>guess 3</td>
<td>-4</td>
<td>6</td>
<td>3.66667</td>
</tr>
<tr>
<td>3.66667</td>
<td>0.44447</td>
<td>7.33334</td>
<td>3.40406</td>
</tr>
<tr>
<td>3.40406</td>
<td>0.06348</td>
<td>7.21212</td>
<td>3.40555</td>
</tr>
<tr>
<td>3.40555</td>
<td>0.00009</td>
<td>7.21110</td>
<td>3.40554</td>
</tr>
</tbody>
</table>

This value should approach zero.

Example

where do \(y = x^3 + x^2 - 5 \)

\[x^3 + x^2 - 5 = x^2 + 2x \]

\[y = x^2 + 2x \] intersect? \(x^3 - 2x - 5 = 0 \)

<table>
<thead>
<tr>
<th>(x_n)</th>
<th>(f(x_n))</th>
<th>(f'(x_n))</th>
<th>(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>guess 2</td>
<td>-1</td>
<td>10</td>
<td>2.1</td>
</tr>
<tr>
<td>2.1</td>
<td>0.061</td>
<td>11.23</td>
<td>2.0946</td>
</tr>
<tr>
<td>2.0946</td>
<td>0.000018</td>
<td>11.16</td>
<td>2.0946</td>
</tr>
</tbody>
</table>

\[@ (2.0946, 8.5765) \]

Problems with Newton's method —

#1

First guess \(x_0 \) leads to \(x_1 \), which leads to \(x_0 \), which leads to \(x_1 \), etc.

To avoid this problem, pick a different first guess. (Keep an eye on \(f(x_n) \) to make sure it's going to 0.)

#2 Method breaks down if \(f(x) \) is not differentiable at \(x_0, x_1, x_2 \ldots \)